Secondary chemical shifts in immobilized peptides and proteins: a qualitative basis for structure refinement under magic angle spinning.

نویسندگان

  • S Luca
  • D V Filippov
  • J H van Boom
  • H Oschkinat
  • H J de Groot
  • M Baldus
چکیده

Resonance assignments recently obtained on immobilized polypeptides and a membrane protein aggregate under Magic Angle Spinning are compared to random coil values in the liquid state. The resulting chemical shift differences (secondary chemical shifts) are evaluated in light of the backbone torsion angle psi previously reported using X-ray crystallography. In all cases, a remarkable correlation is found suggesting that the concept of secondary chemical shifts, well established in the liquid state, can be of similar importance in the context of multiple-labelled polypeptides studied under MAS conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring amide nitrogen quadrupolar coupling by high-resolution 14N/13C NMR correlation under magic-angle spinning.

The measurement of amide nitrogen 14N quadrupolar coupling by two-dimensional 14N/13C correlation experiment is presented with a natural abundant polypeptide. Directly bonded 14N/13C pairs are correlated through J and residual dipolar coupling under magic-angle spinning using a HMQC-type pulse sequence. The 14N quadrupolar coupling is measured from the isotropic second-order quadrupolar shift o...

متن کامل

High-Resolution NMR of Anisotropic Samples With Spinning Away from the Magic Angle

High-resolution NMR of samples in the solid state is typically performed under mechanical sample spinning around an axis that makes an angle, called the magic angle, of 54.7 degrees with the static magnetic field. There are many cases in which geometrical and engineering constraints prevent spinning at this specific angle. Implementations of in-situ and ex-situ magic angle field spinning might ...

متن کامل

13C–13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: Applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination

A technique is presented to recouple homonuclear dipolar couplings between dilute spin pairs such as C–C systems under very fast magic angle spinning ~MAS! in solid-state nuclear magnetic resonance ~NMR! spectroscopy. The presented technique, finite pulse rf driven recoupling ~fpRFDR!, restores homonuclear dipolar interactions based on constructive usage of finite pulse-width effects in a phase...

متن کامل

Protonation, tautomerization, and rotameric structure of histidine: a comprehensive study by magic-angle-spinning solid-state NMR.

Histidine structure and chemistry lie at the heart of many enzyme active sites, ion channels, and metalloproteins. While solid-state NMR spectroscopy has been used to study histidine chemical shifts, the full pH dependence of the complete panel of (15)N, (13)C, and (1)H chemical shifts and the sensitivity of these chemical shifts to tautomeric structure have not been reported. Here we use magic...

متن کامل

Enhanced sensitivity and resolution in (1)H solid-state NMR spectroscopy of paramagnetic complexes under very fast magic angle spinning.

High-resolution NMR spectroscopy for paramagnetic complexes in solids has been rarely performed because of its limited sensitivity and resolution due to large paramagnetic shifts and associated technical difficulties. The present study demonstrates that magic angle spinning (MAS) at speeds exceeding 20 kHz provides unusually high sensitivity and excellent resolution in 1H solid-state NMR (SSNMR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomolecular NMR

دوره 20 4  شماره 

صفحات  -

تاریخ انتشار 2001